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yielded unsatisfactory results owing to considerable 
beam instabilities. Hence, the present work profited 
from a period of excellent ring operation with stable 
beam and electron current life times of up to 4h. 

Applications of the method to other non-cubic 
structures with comparable properties are most likely 
to corroborate the optical model, and further experi- 
ments with new substances are planned. 

Financial support, granted by the Bundesminister 
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Abstract 

High-energy transmission electron diffraction from 
thin crystals under conditions of multiple scattering 
is considered. An expression is derived for the 
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Jacobian of the scattering-matrix mapping, contain- 
ing all partial derivatives of the scattering-matrix ele- 
ments with respect to structure-matrix elements. (This 
structure matrix describes the scattering crystal and 
incident-beam direction). These results may be used 
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to determine the regions of convergent-beam electron- 
diffraction (CBED) patterns which are most sensitive 
to changes in particular structure-factor amplitudes 
and phases (due, for example, to the effects of crystal 
bonding) and to develop more-efficient CBED 
algorithms based, for example, on a perturbation 
series in the incident-beam direction. A two-beam 
example is given. 

I. Introduction 

Scattering matrices in the form of a unitary transfor- 
mation arise in many fields of physics. In this paper 
we analyse the scattering matrix S which describes 
the multiple elastic Bragg scattering of kilovolt elec- 
trons traversing a thin perfectly crystalline slab of 
thickness t. Our aim has been to derive a simple 
formula for the derivative DSA of the scattering 
matrix S with respect to entries in the structure matrix 
A, where S(A) = exp (2~riAt). The matrix A contains 
both the Fourier coefficients Vg of crystal potential 
and parameters Sg which specify the incident-beam 
direction and wavevector. DSA is defined to be the 
unique linear map which gives the best approximation 
to the scattering matrix in a neighborhood of A. If X 
is an arbitrary (small) perturbation to A then Taylor's 
theorem gives 

S(A + X) - S(A) + DSA(X). 

Our results show that, provided the structure matrix 
A is both diagonalizable and invertible (conditions 
nearly always met with in practice), we have 

DSA(X) = 27ritS(A)X~ + [S(A)X3- X3S(A)]A -l. 

Here, the matrices XI and X3 are computed in terms 
of X by simple formulae given in equations (17), (18), 
(22a) below. It is a corollary of this general case that 
if A and X commute, then A is no longer restricted 
to be diagonalizable or invertible, and the formula 
simplifies to 

DSA(X)= 27ritS(A)X. 

Now let sii, akt be arbitrary elements of the n x n 
scattering and structure matrices, respectively. The 
map DSA may be thought of as an n2x n 2 matrix 
with ( ij)( kl)th element OSij/ Oakl, i, j, k, l= 1 , . . . ,  n. 

An explicit formula, amenable to numerical appli- 
cations, is given for this (ijkl)th partial derivative 
[(29)] and we subsequently discuss how to use these 
quantities to derive expressions of physical signi- 
ficance, such as the total derivative dI/dO of an 
observed beam intensity with respect to incident- 
beam orientation. A worked example is given in 
Appendix 4. 

A second paper will apply our results to the analysis 
of the effects on convergent-beam electron-diffraction 
(CBED) patterns of small variations in Vg and Sg 
(such as those due to bonding in crystals or changes 

in beam direction). The results may also be used for 
the development of more-efficient algorithms for the 
rapid computation of CBED patterns, in which the 
dynamical intensities for one orientation are 
expressed in terms of those for a slightly different 
orientation. The Jacobian might also be used to deter- 
mine directly the changes in structure factors due to 
crystal bonding from a comparison of measured 
CBED intensities with dynamical calculations for 
crystals containing unbonded atoms. Our approach 
is based on the methods of first-order perturbation 
theory, and includes all the parameters (e.g. beam 
direction) in the structure matrix. 

The success of X-ray and neutron crystallography 
owes a great deal to the development of efficient 
computational algorithms. Using data from various 
experimental techniques such as powder diffraction, 
direct statistical methods, isomorphous replacement 
and Patterson maps, these algorithms have been 
refined over the years to the point where the solution 
of crystal structures with small and moderate-sized 
unit cells has become almost routine. These large 
software packages contain a vast amount of con- 
densed crystallographic knowledge, including 
methods for the solution of the phase problem, sym- 
metry information etc. 

The complexity of the electron-diffraction problem 
(due to multiple scattering) has, however, so far 
prevented the development of efficient standardized 
software packages similar to those used in X-ray 
crystallography. Yet the advantages of electron 
crystallography provide a strong incentive for their 
development. These advantages include the ability to 
obtain atomic-resolution electron-microscope images 
of the same region as that analyzed by CBED (using 
the same instrument), the ability to obtain diffraction 
patterns from sub-nanometer-sized regions, and 
greater sensitivity to bonding and ionicity effects 
(Humphreys, 1979). In the past, CBED patterns have 
been used for the study of bonding in crystals (Voss, 
Lehmpfuhl & Smith, 1980; Zuo, Spence & O'Keeffe, 
1988), for phase identification [based on their sym- 
metry properties (Steeds, 1979)] and, in rare cases, 
for the solution of unknown crystal structures (Vin- 
cent, Bird & Steeds, 1984). The favored technique 
has become the convergent-beam electron-diffraction 
(CBED) method, in which a complete rocking curve 
is produced simultaneously in each diffracted order. 

The traditional method of simulating CBED pat- 
terns has been based either on the multislice method 
(Buseck, Cowley & Eyring, 1989) or on the Bloch- 
wave method (Bethe, 1928). A Fortran listing of a 
typical Bloch-wave CBED program can be found in 
Zuo, Gjones & Spence (1989). For accurate quantita- 
tive work it is necessary in this method to diagonalize 
the structure matrix A for every point in the experi- 
mental diffraction pattern. For the refinement of 
structure factors needed in the study of bonding, this 
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tedious process must be repeated for many combina- 
tions of structure factors and other parameters 
(sample thickness, accelerating voltage, absorption 
coefficients) until good agreement with the experi- 
mental data is obtained. Our aim here is to speed up 
and automate this refinement process. 

The effect of a perturbation in tilt on the scattering 
matrix has been discussed briefly in connection with 
the effect of small tilts on the reducibility of the 
scattering matrix to two-beam form, and the con- 
sequent periodicity in thickness of lattice images, by 
Anstis, Lynch, Moodie & O'Keeffe (1973). 

2. The scattering matrix in transmission electron 
diffraction 

We consider a plane-wave electron beam traversing 
a thin crystal of thickness t in Laue or transmission 
geometry. It is shown in texts on electron diffraction 
(Hirsch, Howie, Nicholson, Pashley & Whelan, 1977; 
Humphreys, 1979) that the solution of the one-elec- 
tron Schroedinger equation for this problem gives the 
complex amplitude ~g of a diffracted Bragg beam g 
a s  

q)g exp[27ri(K+g) r)]Y~ '* ' = • Co Cg exp (27tiT, t). (1) 
i 

Here, K = K, + Kzz is the mean electron wavevector 
inside the crystal, whose magnitude is given by 

K 2 = [KI = = Uo + 2mlelE/h E (2) 

with E the accelerating voltage and electron structure 
factors Ug=2m[elVg/h 2, where Vg is a Fourier 
coefficient of crystal potential in volts. Individual 
Bloch waves have labeling wavevectors k (j) such 
that Tj = k~ ~)- Kz(=k~ j ) -  K). Boundary conditions 
appropriate to a thin parallel-sided slab of crystal are 
applied. We make the projection approximation 
[neglect of reflections in higher-order Laue zones 
(HOLZ)]. Backscattered waves are neglected. We 
assume that the incident-beam direction is close to 
the surface-normal direction. Values of the eigenvec- 
tor elements C~ and eigenvalues yj are obtained from 
the eigenvalue dispersion equation 

AC j= ~/jC j. (3) 

Here the structure matrix A contains the electron 
structure factors Ug/2IKI in off-diagonal positions, 
and quantities specifying the incident-beam direction 

Sg = ( - 2 K t .  g - g 2 ) / 2 K  (4) 

on the diagonal, where Sg is the excitation error for 
beam g (positive for reciprocal-lattice points inside 
the Ewald sphere). We define the Laue circle as the 
intersection of the Ewald sphere with the plane of 
reciprocal-lattice points which passes through the 
origin (the ZOLZ). Then Kt(Kx, Ky) is a vector drawn 
from the center of the Laue circle to the origin of 

reciprocal space. It is the component of K in the 
zero-order Laue zone. The Bragg condition is satisfied 
if a reciprocal-lattice point falls on the Laue circle, 
so that Sg = 0. 

Niehrs (1959) first showed that (1) may be written 

• (g, Kt) = S~o (5) 

where the scattering matrix S is given by Hirsch et 
al. (1977, equation 12.17): 

S(A) = S(t, E, Ug, Kt) = C{E}C-' 

=exp [27riA(Kt)t] (6) 

with E a diagonal matrix whose ith element is 
exp (21riyit). 

3. Formal development 

Background material for this section may be found 
in the texts by Lancaster & Tismenetsky (1985) and 
Shaw (1982). In the following formal development 
we use matrices Z and A. At the end of § 3 the results 
so obtained will be applied to corresponding structure 
matrices A (where Z~--~27ritA) and perturbations X 
(where A~--~27ritX), which may represent physical 
quantities. We consider the exponential mapping 

:C n×" ~ C "×" defined by 

N 

~ ( Z ) = e x p ( Z ) =  lim ~ ZJ/j! 
N~ooj=O 

=(1+z+½z2+...), 
where C n×" is the vector space of general complex 
n x n matrices, of which Z is an element. We use the 
results that the mapping @(Z)=exp  (Z) is every- 
where analytic, and hence continuously differentiable 
and uniformly convergent for all Z in any bounded 
region of C "×" 

We now restrict the analysis to those matrices Z 
which are both diagonalizable and invertible. The 
generalization to arbitrary Z is noted subsequently. 
The derivative D@z of @ at Z is defined to be the 
linear map D ~ z  : C ~×" ~ C "×n satisfying 

lim [~(Z+A)-~(Z)-D~z(A)]/II~II=0. (7) 
IIAII~O 

Note that, although we are restricting the form of Z, 
the argument A of D ~ z  (i.e. the perturbation to Z) 
may be any general complex matrix. D ~ z  is unique 
if it exists, and its 112X 112 matrix representation on 
the standard basis of C n2 is the Jacobian matrix of 
qb evaluated at Z. Thus if the 112 elements of Z are 
arranged as a row vector of dimension 112 in some 
arbitrary but fixed order, so that 

z = ( z , j )  ,-- ,  ( z ,  , . . . , z , 2 )  

and the matrices ~ ,  z~ are mapped into corresponding 
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vectors 

¢' = ( ~ o ) ~  ( ~ i , . . . ,  ~,,0, 
A = ( ~ , j ) ~ ( ~ x , . . . ,  ~,0, 

then D ~ z  may be considered to be the n 2 x n 2 matrix 

D C ' z = ( a ~ k l a z , ) ~ , = l  ...... , 

and, if 

u = [~0,(z+`4 ) , . . . ,  ~.~(z +`4 ) ] - [ ~ l ( Z ) , . . . ,  ~,~(z)], 
then 

U - [ D ~ z ( 6 , , . . . ,  6,,Qt] ' 
l i m ~  1(31,...,6,~)1 =0,  

where the limit is taken as 1(3~,. . . ,  6,,01 tends to zero, 
and the t denotes transpose. 

This is the approach to be taken when interpreting 
the derivatives physically. For the purposes of deriv- 
ing an expression for the value of the linear transfor- 
mation D~z  for an arbitrary perturbation `4, we use 
the result that 

D~z(,4)=limo [Cb(Z+h,4)-~(Z)] /h  (8) 

where h is a scalar. 
We now define the linear operator L with respect 

to Z by 

L= Lz= L: C"×"~ C "×" (9) 

L(,4 ) = ZA Z - I -  `4. (10) 

Appendix 1 establishes that 

DClSz[L(,4)]=[exp(Z),,4]Z -1 (11) 

where square brackets are used to denote commu- 
tators. 

Appendix 2 establishes that, provided Z is 
diagonalizable and invertible, every general complex 
matrix ,4 has a unique decomposition as 

,4 =,41+,42 (12) 
where 

L(,41) = 0  (13) 

L(,43) =`42 (14) 

for some (not necessarily unique) ,43. 
Hence, by the linearity of the derivative, 

Dq~z(A) = D~z(  A1 + at )  = D~z(  `4,) + D~z (  At). 

(15) 

Now, from (13) and (10), Z,4~Z -1 = A~, thus [Z, A1] = 
0. But it follows from (8) and the definition of the 
exponential mapping (see Appendix 1) that if 
[Z, `4] = 0, then D~z(`4)  = exp (Z),4. Hence 

D~z(  ,4,) = exp (Z),41. 

In addition, for the second term in (15), 

DCrpz(,42) = D~z{ L(,43)} = [exp (Z), ,43]Z-'. 

Finally, we have 

DClgz(,4) : (exp Z),4, + [exp  (Z), ,43]Z -1 

= (exp Z),4~ + {(exp Z)A3-  ,43(exp Z)}Z -1. 

(16) 

This establishes the result for all A, and for all 
matrices Z which are both diagonalizable and invert- 
ible. The derivative, however, exists continuously for 
all Z and `4. For completeness, therefore, we include 
the following statement to extend our result to 
arbitrary matrices Z: Both the diagonalizable and the 
invertible matrices comprise sets which are dense in 
C "×". By virtue of this fact, the derivative D~z(`4)  
evaluated at a matrix Z which fails to be diagonaliz- 
able or invertible or both may be defined precisely 
(and so computed) by a limiting process using (16) 
and a sequence {Z,} of diagonalizable invertible 
matrices. That is, if lim,_~o~ Z,  = Z, then 

D ~ z ( ` 4 ) =  lim {(exp (Z,),4~ 
t l - -~  o o  

+ [(exp Z.) ,43-,43(exp Z.)]Z~-I}. 

4. Evaluation of A~, A 2 and A3 

We define the diagonal matrix D of eigenvalues yj by 

Z = C D C  -2 (17) 

where C is the n x n matrix of eigenvectors of Z. Now 
define 

Y = C - 1 A C  (18) 

and the three matrices Y1, Y2, Y3 componentwise by 

(Y1),j = (V) eSy, y: (19) 

(Y2)o = (Y)ij(1 - 8yHj ) (20) 

(Y3)~j=(V)~j(1-Sv, vj)/(y~/yj-1). (21) 

In these equations, 8),~),j is the Kronecker delta and, 
in (21), (Y3)0 is understood to be zero if ~ i = %  
(critical-voltage condition), despite the division by 
zero. The above expressions appear to be numerically 
awkward, involving as they do the discontinuous 
Kronecker delta and the diverging term (%/39 - 1)-1; 
fortunately, this awkwardness disappears, as it must, 
in the final results [(29)]. If an eigenvalue degeneracy 
is not present, Y~ + Y2 is just the decomposition of Y 
into diagonal and off-diagonal elements. We now 
define 

dj = CYjC -1, j =  1,2,3. (22a) 

It is verified in Appendix 3 that A1, ,42, ,43 so 
defined give the desired decomposition of ,4, hence, 
the definition of DdPz(,4 ) is complete. 

Now consider the scattering-matrix mapping, 
defined by 

S(A) = exp (2~riAt), (22b) 
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where A is the structure matrix, and suppose A is 
given a complex perturbation X. If A is diagonalized 
as CDC -~, then we have 

A -l = CD-1C -l, (23) 

where D -1 is the diagonal matrix with j th  diagonal 
element yj-1. Making the appropriate substitutions in 
the results above, it is straightforward to verify that 

DSA(X) =C[27ri tEY~+(EY3-Y3E)D-~]C -~ (24) 

where Y~ and Y3 are defined as above, with 

y =  C-1XC. 

The derivative of the scattering matrix S is given 
in (24) entirely in terms of quantities derivable from 
the structure matrix A and the perturbation to it X. 
This equation [and (26)] may be used for computa- 
tional purposes in analyzing the sensitivity of CBED 
patterns to experimental and crystal structure par- 
ameters. 

By Taylor's theorem, the best linear approximation 
to the scattering matrix S in the neighborhood of a 
point A is then 

S(A+X)-~  S(A) + DSA(X). (25) 

We stress that here, as below, the perturbation X 
can be any general complex matrix. In contrast to A, 
X is not restricted in any way. From (24), we have 

S(A + X) -~ C[E(I + 27ritY~) 

+ (EY3-YaE)D-1]C - '  . (26) 

5. Evaluation of the Jacobian 

We have noted that D S  A has a unique representation 
as the n2x n 2 matrix 

DSA = (Osp/Oaq)p,q=, ...... ~ (27) 

where we reiterate here that the matrices S and A are 
understood to be vectorized in some arbitrary but 
fixed manner [see, for example, {} 12.1 in Lancaster 
& Tismenetsky (1985)]. In addition, we have, from 
(24) an expression 

D S A ( x )  = [ ( D S A ( x )  )o]i,j=l ...... 

where 

. . .  F , , ,X , ,  (28) = F11Xl l  + + [ D S A ( X ) ] i j  ij ij 

for some constants Fk~, k, l= 1 , . . . ,  n. Identifying 
the expressions, we find that 

F k~ = OsiJ OaktlA. 

Moreover, a tedious but straightforward calculation 
from (24) shows that 

Fel = ~ CipCp~ ~ C,qC}l{2rritEp6v~,~ 
p=l q=l  

+[(Ep-Eq)l(3,p-Tq)](1-8~.~q)}. (29) 

Equation (29) gives the derivative aSij/aakllA in a 
readily computable form, completely independent of 
any perturbation X. Moreover, this expression sim- 
plifies considerably in several significant special 
cases; for example, if [A, X] = 0, or if it can be deter- 
mined that no eigenvalue degeneracies exist, or if 
absorption is ignored. (In that case, A is real sym- 
metric, hence Hermitian, and C -1= C'.) 

Given the structure matrix A and the crystal thick- 
ness t we can immediately compute the n 4 complex 
quantities Fi~ t, i, j, k, l = 1 , . . . ,  n. In applications of 
the dynamical theory, however, many different 
'degeneracies' (i.e. equal elements in A) are imposed 
by the structure of A, which depends on crystal sym- 
metry and beam direction. For example: 

(1) Centrosymmetric crystals without absorption 
in a single orientation (plane-wave illumination). 
Then the scattering mapping is from R (n2-n)/2 into 
C ('2+")/2, with additional restrictions on the image 
space due to unitarity. 

(2) Centrosymmetric absorbing crystals in any 
orientation. Here the mapping is from R" into 
c(n2+n)/2, 

(3) In almost every case, the analysis is performed 
only on mappings into one column or row of S, since 
only a single column has physical significance. This 
restriction to one column of S distinguishes the elec- 
tron-diffraction problem from that of the total 
exponential mapping in an important way. 

Thus we are presented with the following problem: 
Given any auxiliary mapping S: C M + C u associated 
with the mapping S, compute the Jacobian matrix 

D~x = ( a~i/ aajlx)l 
for i = 1 , . . . ,  N a n d j  = 1 , . . . ,  M. Here .~ is the struc- 
ture matrix, understood to contain only M_< n 2 
independent elements, and S(A) is an ordered N- 
tuple (N<_ n 2) containing the relevant elements of 
the scattering matrix. 

This problem may be solved on a case-by-case 
ij 

basis, given the set {Fkt}O,~z and using the definition 
of the derivative. The procedure is essentially that 
followed above in obtaining the Fk~, and in every 
case we find that agi/adj is some easily computed 
linear combination of the Fk~. 

There are two additional points to be made. First, 
once DSx is found, the chain rule may be used to 
compute derivatives of functions of the vector S(A). 
For example, if experimental data are collected from 
convergent-beam patterns, then S =  ( s l , . . . ,  s,) will 
contain the complex scattering data corresponding to 
a given crystal of constant thickness t covering a 
range of incident-beam directions indexed by 0. Then 
A has n variable elements a l , . . . ,  a,, (the diagonal 
elements), which are each functions of 0 only. If Is, I 2 
is the ith beam intensity and Arg (si) the ith beam 
phase, then dlsil:/dO and d[Arg(si)]/dO are 
computed readily in terms of OsJOaj using the 
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chain rule. Such computations, however, require that 
we have the real quantities a(Res~)/O(Reaj), 
0(Re s,)/O(Im aj), 0(Im sj)/O(Re aj), 
0(Im si)/a(Im aj), rather than the single complex 
quantity Osdaaj. This leads to our second point - 
since S is analytic, the Cauchy-Riemann equations 
will hold for every A. In that case, we have the follow- 
ing additional relationships: 

Os__ 2 0(Re s,_______~) .0(Ira s,) 
Oaj-0(Re aj) t- t0(Re aj) 

and 

0(Re si) O(Im si) 

O(Re aj) O(Im aj)' 

0(Re s,) 0(Im s,) 
O(Im aj) O(Re aj)" 

This represents a translation of the complex map- 
ping into a real mapping; such a translation is best 
effected when defining the mapping S. 

6. Discussion 

Equation (29) gives the partial derivative of every 
complex element of the scattering matrix with respect 
to every element of the structure matrix A in terms 
of the eigenvalues and eigenvectors of the unper- 
turbed structure matrix A. Thus we may analyze: (1) 
The strength of dynamical interactions - the effect of 
changes in one structure factor on the intensity of a 
different (but coupled) beam. (2) The effect of small 
changes in sample thickness or accelerating voltage 
on dynamical intensities. [Only in the simplest two- 
beam cases is the optimum thickness for structure- 
factor refinement given by t = (n + ~:J4), where the 
gradient of beam intensity with respect to change in 
structure factor is a maximum]. (3) The effects of 
small changes in orientation on diffracted intensities. 
(4) The effects of small changes in structure-factor 
phases in non-centrosymmetric crystals on CBED 
patterns. In this way, regions most sensitive to vari- 
ations in the phase of particular structure factors, for 
example, might be identified under general n-beam 
conditions. The results of such a perturbation analysis 
may be presented by plotting O~i/O~j over the surface 
of a CBED pattern (Hoier, 1989). Computational 
results of this type will be presented in a forthcoming 
publication. A two-beam example of the evaluation 
of these expressions is given in Appendix 4. 

This work was performed at the NSF National 
Center for High Resolution Electron Microscopy at 
Arizona State University and was supported by NSF 
grant DMR88-13879 (JCHS). 

APPENDIX 1 

We will need the following simplification of the 
expression for the derivative given by (8), viz (eZ 2 

D4~z(a) = 1 ~  eZ) 
~-. (Z  + hA)) - Z j 

lira lira 
h~O N-~oO J/-'=o hj [ 

) = lim Y'~ lira o ( Z + h A y - Z J ,  
N-'~j= o hj! " 

Expanding ( Z + h A y  we see that the Z j terms 
cancel, while all terms of order higher than one in A 
go to zero in the limit as h ~ O. Remaining are the 
terms linear in A; specifically, we have 

N 

D O z ( A ) =  lirnoo E ( z j - ' A + z j - 2 A Z + ' ' "  
j=l 

• ~ - Z A Z J - 2 ~ - A Z J - I ) ( j ! )  - 1  . (A1) 

This is the expression from which lemmas 1 and 2 
follow, essentially as computations. 

Lemma 1: if [Z, A] = 0, then DOz(A)  = eZA. 

Proof: If Z and A commute, then A immediately 
comes out of the sum (A1) on either side, then out 
of the limit by virtue of uniform convergence. The 
j th term in the sum is seen by inspection to be the 
sum of j terms linear in A, whence 

D O z ( A ) =  moo.= J[ jA 

[ "-'z"] 
= lirn ~o--~. A = e Z A  

by definition of the matrix exponential. 

Lemma 2: DOz[L(A)]  = [e z, A]Z -1. 

Proof: first, we claim that the operators DOz and 
L commute: i.e. 

DOz[ L( A ) ] = L[ Dqbz ( A ) ]. 

For, by linearity of the derivative, 

DdPz[ L( A ) ] = D4az( Z A Z - ' )  - Dq)z( A ), 

while, by definition of L, 

L[ DOz(A  )] = Z D O z ( A  )Z- '  - DOz(A  ) 

so it remains only to verify that 

DCI)z(ZAZ-') = ZD4az( A )Z- ' ,  

which follows from (1). Now, we claim that 

L[ DrPz( A )] = [ eZ, A ]Z -'. 
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This is seen as follows: using (A1) and noting that 
the operator comes inside limit and sum, consider 
the result of operating on the j th  term in the sum 
with L. Premultiplying the term by Z and postmulti- 
plying by Z -~ gives 

(1/j[)(ZJA Z -~ + zJ-~ /1 + zJ-2AZW.. . - I -  Z2AZ j-3 

+ZAZJ-2) ,  

whereas the identity operation gives 

(1/j !)(ZJ-~ A + z J - 2 A Z + . . .  + ZAZ ~-2 +/1 zJ-~). 

Subtracting, we obtain after cancellation the fol- 
lowing result for the j th  term: 

(1/j  !)(ZJ/1 Z - ~ - / 1 Z  j - ' )  = (1/j  [)(zJ/1 --/1 z J ) z  - ' .  

Splitting the combined summation and limit into 
the appropriate sum and removing/1 and Z -~ from 
the same, one gets 

( limoo j~o Z~) L[ D O z (  /1) ] = A Z - '  
.= 

Z 
\ N ~oO j=O --~. 

= [ e z,/1 ]Z - '  

by definition of the matrix exponential. The lemma 
now follows from our first claim. 

A P P E N D I X  2 

We give some useful notation and results from linear 
algebra: Let L be a linear operator on a vector space 
V. 

Definition: the image of L, denoted here by Im (L), 
is the set of all vectors v in V having preimages in 
V; i.e. the set of all v in V such that there exists w in 
V satisfying L(w) = v. 

Definition: the kernel of L, denoted ker (L), is the 
set of all vectors v in V which are mapped to the zero 
vector by L; i.e. the set of all v in V such that L(v) = 0. 

Result: Im (L) and ker (L) are subspaces of V. 

Notation: let S, P be subspaces of V. The sum 
Q = S + P of S and P is defined in the obvious man- 
ner. If S n P = 0, then we say the sum is direct and 
write Q = S O P .  

Hence: if V = SO) P, then any vector v in V has a 
unique decomposition as v = v~ +v2, where v~ is in S 
and v2 in P. The existence of such a decomposition 
follows from the definition of S +  P; the uniqueness 
is seen by supposing that Y3"Jt-Y4 is another such 
decomposition. Then v~ - v3 = v4-  v2, where v~ - v3 is 
in S and Va-V2 in P, whence the conclusion v3=v~ 
and V 4 : V 2 . 

Lemma 3: Let the matrix Z be diagonalizable as 
well as invertible. Then 

C " × n = I m ( L ) @ k e r ( L ) .  

That is, every general complex n x n matrix A has 
a unique decomposition as X = A~ + A2, where 

(i) L(/1,)  = O; 
(ii) there exists some n x n  matrix As, not 

necessarily unique, such that 

L(A3) =/12. 

Discussion of  proof: The proof of this lemma 
depends on two key elements as follows: 

(i) The matrix representation of the linear 
operator L is an n 2 × n 2 matrix, which we denote also 
by L, which is diagonalizable whenever the matrix A 
is diagonalizable. This result follows directly from 
the developments given by Lancaster & Tismenetsky 
(1985) (Chap. 12); see in particular proposition 12.1.4 
and theorem 12.2.1. 

(ii) Since L is diagonalizable, C n×" is decomposed 
as the direct sum of the eigenspaces of L [see Shaw 
(1982) (2.3)]. Thus 

C "×" = Im (L)~)ker (L), 

since ker (L) is the zero' eigenspace of L, and Im (L) 
is the direct sum of all the non-zero eigenspaces. 

A P P E N D I X  3 

Justification for the formulae giving AI, A 2 ,  A 3 . 

We are required to show three things: 
(i) A = A~ +/12 

(ii) L(A1) =0  
(iii) L(/13)=/12. 
That is, if (i)-(iii) can be shown to hold, then we 

are guaranteed that A~ and /12 give the unique 
decomposition, while/13 is a suitable matrix for use 
in (16). 

(i) follows immediately from the fact that Y =  
Y~ +Y2 by construction: 

A1 + A2 = C[Y1 +Y2]C -1 =.CYC -1 = A, 

by definition of Y. 
(ii) and (iii) both follow from the following deriva- 

tion: Let j = 1 or 3. Then 

L(Aj) = ZAjZ  -~ - Aj = CDYjD-1C - '  - CYjC- '  

= C [ D Y j - Y j D ] D - ~ C  -~. 

Now suppose j = 1. We need to show that Y1 and D 
commute; th~/t is, 

(DY1)0 = T i ( Y 1 ) i j =  (Y1D)u = Tj(Y~)u 

for all i, j = 1 , . . . ,  n. But this equation holds only if 

(Y1)u=O o r y i - T j  

for all i, j, which is precisely the constraint place on 
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the elements of Y1 by the kronecker delta. Hence (ii) 
is verified. Finally, let j = 3 above. We have 

0 i f  Yi = ")/j 
( D Y 3 - Y 3 D ) i j = ( Y i - Y J ) ( Y 3 ) i J = ) , j ( Y 2 ) / j  i f % #  yj 

and it is easily seen that this product satisfies the 
definition of the product Y2D, whence 

L(A3) = CY2DD-1C -1 = CY2C -1 = A 2. 

APPENDIX 4 
We illustrate some of the ideas developed in the text 
with the simplest possible example, that of the two- 
beam approximation. 

1. Solution o f  the two-beam case 

The development and notation here parallels that 
of Humphreys (1979). We begin with the general 
two-beam dispersion relation, 

2 U_g  [K;;k~ K2_ik.s+gi2][C,.sl =[00] (B1) 
c2sJ 

where we have denoted the Bloch-wave coefficients 
C~o, C~ by Cu, CEj, respectively, for j = 1, 2, in con- 
formity with our notation. 

With the assumptions of centrosymmetric crystal 
geometry (U_g--Ug) and symmetrical Laue condi- 
tions (g= = 0), and neglecting backscattering via the 
high-energy approximation, we obtain the usual 
eigenvalue equation, 

1 -: ]re,.,] 
2K L u~ -Ik,  + gl 2 L c=.~J L C2jJ" 

(B2) 

In general, k, is antiparallel to g (k, = - g / 2  at the 
Bragg angle). Hence - Ik ,  + gl 2 = - (k  2, - 2k,g + g2). 
For simplicity, we bring the k 2 / 2 K  term over to 
the right side of (2), making the eigenvalues 

y i = k { - K + k 2 / 2 K .  

Employing Humphreys's notation, we set 

~g = K / U~ 

s = - ( g / 2 K ) ( g - 2 k , )  r=(s2+l/~:2g) m. 

Here ~:, is the extinction distance, s the excitation 
error, and we have set r equal to Humphreys's quan- 
tity s'. In this notation, the eigenvalue equation we 
wish to solve is 

[c,,1 re,.,1 o r 
A C2 j j -- '~ L C2sJ'  w h e r e  A = 1 

2~:g 

The solution is straightforward by ordinary means, 
and is given by A = CDC', where C ' =  C -a (since A 
is real Hermitian), and 

[o1 o] o] D = = 
"r2 ~( r + s ) ' 

1 1 ] 
C = ~gQl ~gQ2 

r - s  - ( r + s )  / 

where we have defined 

Q1 = [ ~:g2 + (r - s)2]]/2 = [2r(r - s) ]1/2 

Q2 = [ srg 2 + (r + s)2]1/2 = [2r(r + s) ]1/2. 

The scattering matrix is S(A) = (s,j) = 
exp (2fr iAr)--CEC t, where E is the diagonal matrix 
with j th diagonal element exp (27riy/) for j = 1, 2. 
Performing the matrix multiplication, we find 

S(A) = exp (1fist) 

cos ( Trrt ) - i ( s / r ) sin ( Trrt ) 
x ( i / ~:gr) sin ( 7rrt ) 

( i/ ~gr) sin (Trrt) ] 
cos (Trrt)+ i ( s / r )  sin (Trrt)]" (B2.5) 

The beam intensities are then 

i =1s2,12= 7T sin !~r t )  
7rr j 

Io= Is1,12= 1-I~. (m)  
This completes the usual treatment of the two-beam 

case. The intent has been to fix notation. 

2. Computat ion o f  the Jacobian 

We wish to evaluate the 4 x 4 matrix DS at A; i.e. 
we wish to calculate DSA. We introduce the arbitrary 
vectorization 

X = ( x  u) - ,  (X)vec = (X,,, X2,, X,2, X2~)' 

for any 2 x 2 matrix X, where the t denotes trans- 
position. Then from (27) and (28) we have 

DSA = 27tit exp (Trist) 

,ell ,r'l ~l'~ '/-'"~] 

,eli ,/,],~ ,eli ,r '] i '  
,/,,ff ,r], ~ ,/,,~] ~] ] ]  

(B4) 
where qt~ is evaluated at A, and is defined by 

OSij/Oakt = 27tit exp ( Trist) q t y .  (B5) 
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Expanding (29) (remembering that C - l =  C'), we 
find 

~Okt = COS ( Trrt)( C,2Cj2Ck2Cl2 + C,  C:I Ck~ Cn) 

+ / s i n  ( Trrt)( C~2Cj2Ck2Cl2-- C~ Cjl Ckl Cn) 

+ [ sin (7rrt) / 7rrt ] ( Ci2 Cjl Ck2 Cn 

+ c,,cs~c~,c,~). 

Note that ~ s  = ~ ;  i.e. D S  A is symmetric, so we 
need only specify the diagonal elements and the six 
elements in the upper triangle. The following relations 
are useful in computing the ~ l .  

2r 
0102 ~:, det ( C ) = + I ;  

1 1" 2 .  1 1 s 2 m + _ ~  = ~:g, = _  ~:g 

1 1 s 4  
Q-~ + Q~ = I -  sc~; Q---~- Q~ = r  ~:~" 

After a tedious computation, we find that 

~ l l  1 = [ 1 - (2sC2r2) -1 ] cos (Trrt)- i(s/r) sin (wrt) 

+ (2~:2r2) -1 sin (Trrt)/7rrt; 

~22= ~ + 2i(s/r)  sin (~rrt); 

~ 2  2= ~ I  = (2~:~r2) -1 cos (Trrt) 

+ [ 1 -(2~:~ r2) -1 ] sin (,rrt)/7rrt; (B6) 

~ =  rr /~=-(s /2¢gr  2) cos (Trrt)+(i/2¢gr) sin (Trrt) 

+ (s/2¢gr 2) sin ( 7rrt)/7rrt; 

~ =  ~ ~ =  - rIt~11 + ( i/ ¢gr) sin (Trrt); 

~ 1 =  ~ =  Wl122_si n (~rrt)/Trrt. 

3. Examples 

We have remarked that if X is a perturbation to A 
satisfying [ A , X ] = 0 ,  then the expression for the 
derivative simplifies to 

DSA(X) = S(A)X = exp (27riAt)X. 

For example, take X = cl, a constant complex multi- 
ple of the 2 x 2 identity matrix. Then certainly [A, X] = 
0, and 

0 
[DSA(X)]vec = OS [0cJ 

-- ( c)2 7rit exp ( Trist)( ~ 1111+ qt22,11 
21 21 12 12 22 1/f225 t 

~11+ ~22, ~11+ ~22, ~11+ r22J 

= [S(A)cl]v~ = [S(A)X]ve¢, 

as we see by comparison with (B2.5). 

Similarly, it is clear that the structure matrix A 
commutes with itself; accordingly, we expect that 

I°l 
1/2~g =[exp (2~-iAt)A]vec [DSA(A)]vec = DSA [1/~scg ] 

and the verification is straightforward from (B2.5), 
(B4), (B5) and (B6). Now, denote by 0 the angular 
deviation from vertical of the incident beam. Then 
all the angular dependence of the structure matrix is 
contained in k,, via the relation k , = K  sin 0. 
Moreover, the k2/2K term which we have shuffled 
into the eigenvalues just adds an arbitrary multiplica- 
tive phase to the complex scattering data, so this 0 
dependence can be ignored for all physical purposes. 
Thus, A is dependent on 0 only through the parameter 
s. Explicitly, 

s= s ( O ) = - g ( g / 2 K - s i n  O) 

= g(sin 0 - s i n  Oh), 

where Ob denotes the Bragg angle; sin Ob=g/2K. 
Since s = 0 when 0 = Oh, the matrix 

x:[00 0 l 
is a small perturbation to 

A(0b)  - 1 /2~g 

for 0 near Ob. Setting s = 0 in (B2.5), (B5) and (B6), 
we obtain a first-order approximation to the scattering 
matrix for orientations near Bragg incidence: 

s(0) =S[A(0)] 
= S[A(0b)] + DSA(0b)(X) 

cos i sin 

/ i  sin ('rrt~ cos 
L \ ~ g /  

+ ~ritg(sin 0 - sin Oh) 

I -1 
c o s  

(o) 
i sin ~-g 

i sin (~r~ t ) 

cos + sin 
7rt 
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Finally, to analyze rocking curves we want analyti- 
cal expressions for the total derivatives diD~dO and 
dig~dO. Consider I0 = [s~[ 2. Let a superscript asterisk 
denote the complex conjugate. Then if A = (akl), we 
have 

where 

diD d (ds , ,  s* , ) ,  
dO - d O  I s"12  = 2 Re \ dO 

d s l ~ _ ~ O S l ~ d a k l _ O s l l  ds 

dO Oakl dO Os dO' k=l /=1 

since s = a22 is the only element of A which depends 
on 0. Since 

ds 
Osll-27ritexp(1rist)qt~Os and ~ - ~ = g c o s  0, 

we compute immediately 

dlo (OSlldS ) 
dO = 2 R e \  Os - ~  s*l 

coso(s) 
- ~r2 sin (Trrt) 

x [cos (Trrt) sin ( 'rrrt)l .  
• rrt .l 

By an exactly similar computation, we find 

dig (Os2, ds ) dlo 
dO - 2 Re S*l = . \ Os dO dO 

The correctness of these expressions may be easily 

checked directly from (B3); it is much easier in this 
case to compute the total derivatives in this manner. 
When the dimension of the matrices exceeds two, 
however, it is in general impossible to perform the 
necessary analytical diagonalization of the structure 
matrix to obtain expressions for I (0) ,  so if the deriva- 
tive is to be computed at all, it must ordinarily be 
approximated numerically by a difference quotient. 
In contrast to this, our method allows such derivatives 
to be calculated directly for matrices of any size. 
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Abstract Introduction 

The piezoelectric, elastic, photoelastic and Brillouin tensors 
for the point groups 5(C5), 5($10), 1-0(Csh), 1---6m2(Dsh), 
52(D5), 5m(Cso), 52m(Dsd), 235(I) and (2/m)3-5(Ih) have 
been calculated and are tabulated here. 

Although periodic crystals with pentagonal symmetry in 
two dimensions and icosahedral symmetry in three 
dimensions cannot exist, there are both theoretical (Levine 
& Steinhandt, 1984) and experimental (Shechtmen, Blech, 
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